




Th
is

 w
or

k
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
Co

m
m

on
s

At
tr

ib
ut

io
n

4.
0

In
te

rn
at

io
na

l L
ic

en
se

ht
tp

://
cr

ea
ti

ve
co

m
m

on
s.

or
g/

lic
en

se
s/

by
/4

.0
/

Proctor, C., Paljor, Y., & Bhatt, V. (2025). Permeable media: A design strategy for Constructionist
software. Permeable media. Constructionism Conference Proceedings, 8/2025, 239–248. https://doi.
org/10.21240/constr/2025/51.X

Full Paper

Permeable media: A design strategy for
Constructionist software

Permeable media

Chris Proctor1 , Yeshi Paljor1 , and Varun Bhatt1 

1	 University at Buffalo (SUNY), Buffalo, New York, USA

Abstract
This paper introduces a design strategy called permeable media for software used in Con-
structionist approaches to introductory computer science education. Permeable media is
characterized by three qualities: it invites learners to extend themselves into the medium, it
has affordances for learners to make the medium part of themselves, and it supports learners
in growing beyond the medium when they are ready to do so. This paper joins a long tradi-
tion of design for Constructionist learning environments, emphasizing two principles which
have not been emphasized in the prior literature: incorporating media into one’s identity and
embodiment, and support for growing beyond the medium. This paper illustrates permeable
media by analyzing the design of Banjo, a software package which allows beginners to create
web applications. The final sections theorize the relationship between permeable media and
computational literacies and propose a research agenda based on this paper’s conceptualiza-
tion of permeable media.

Keywords and Phrases: Permeable media, User interface design, Computer science education,
Computational literacies

1.	 Introduction
This paper introduces a design strategy called permeable media for software used in
Constructionist approaches to introductory computer science. We define permeable
media in terms of three qualities: (1) permeable media invites beginners to extend
themselves into the medium, (2) permeable media offers affordances for integrating
it into learners’ cognition and identities, and (3) permeable media supports learners
to keep growing beyond the media when they are ready. The metaphor we have in
mind is potting soil: a medium in which seedlings can germinate, integrate the soil
into their root systems, and then continue to expand into the surrounding soil after
they are transplanted.

This paper develops a theoretical account of permeable media, drawing on theories
of distributed cognition, embodiment, identity authorship, and material intelligence.
We then analyze a case study of Banjo, a software package designed as permeable

https://doi.org/10.21240/constr/2025/51.X
https://doi.org/10.21240/constr/2025/51.X
https://orcid.org/0000-0003-3492-9590
https://orcid.org/0009-0009-0082-8223
https://orcid.org/0000-0002-3914-6651

240

Permeable media: A design strategy for Constructionist softwar

media, in the context of a Constructionist introductory computer science course
(Proctor et al., 2020). We show the alignment of Banjo’s permeable design strategy
with the broader goals of the course.

2.	 Background
We view permeable media as following in the tradition of Resnick and Silverman’s
(2005) insights on designing construction kits for children, especially their strategies
for inviting in diverse learners such as “low floor and wide walls” and “support many
paths, many styles.” Along with Resnick and Silverman, and many others, our aim is
to design technologies well-suited to Constructionist learning (Papert, 1980). How-
ever, there are two aspects of permeable media which have not been emphasized in
the prior literature: incorporating media into oneself and growing beyond the media.

Permeable media has affordances by which users can extend their cognitive and
social practices into the medium, using it as an object-to-think-with (Papert 1980)
and as a form of distributed cognition (Hollan, Hutchins, & Kirsh, 2000). The me-
dium becomes part of the user in two senses. First, we mean that the user comes to
experience the medium as part of their embodiment (Hirose, 2002), as an extension
of their capacity to sense and to act on their environment. Cell phones are an excel-
lent example of this kind of embodiment; one often has an awareness of where their
phone is and may experience a moment of panic upon realizing it is missing. We tend
to regard the phone’s data and apps as extensions of our inner worlds and may expe-
rience a sense of violation if someone gains access to our phone without permission.
We also act on the world through our phones, reaching for a phone during a conver-
sation to look up information for a claim, to check the weather, or to find out how
long we will have to wait for the bus. Second, we mean that users author identities for
themselves (Holland et al., 1998; Ivanič, 1998) using the medium, such that the me-
dium becomes inextricably woven into their self-conceptions and the social practices
by which they sustain identities. For example, Brock Jr. (2020) documents distinctive
forms of identity which only emerge within the figured world of Black Twitter, and
which were dependent on the technological infrastructure of Twitter. One sense,
therefore, in which media can be permeable is that users can extend themselves into
it make it part of themselves.

The second quality which distinguishes permeable media from prior theorizations of
Constructionist learning technologies is that users, when they are ready, can contin-
ue growing beyond the affordances and constraints of the media without having to
abandon the practices and understandings they have built. This has been a challenge
for Scratch, for example, as learners often perceive Scratch to be juvenile and express
a desire to move on to “real programming” (Weintrop & Wilensky, 2015a). However,
computer science concepts appear to be bound to some extent to the programming
modality (Parsons & Haden, 2007; Weintrop & Wilensky, 2015b), so transfer to a
language such as Python may be difficult and incomplete. A more permeable ap-
proach might be to provide an interface which can translate between block-based
and text-based representations, or to work from the beginning in a full-powered pro-
gramming modality, with layers of abstraction to help beginners manage complexity.
For example, Racket (Felleisen et al., 2015) has been used as a teaching language in
which the language itself is initially very limited and then is gradually extended as
new constructs are learned. Such strategies could make it possible to keep growing
beyond the novice stage without having to leave behind the media into which one
has invested oneself.

241

Chris Proctor, Yeshi Paljor, and Varun Bhatt

Permeable media stands in contrast to several existing framings of the role of tech-
nology and learning. When technology is viewed as scaffolding (Pea, 2004), it is
seen as a temporary external support which will later be removed so that the learner
can perform the skill on their own. In contrast, permeable media becomes part of
the learner (as described above), and the learner’s newly acquired competencies are
often dependent on their newly configured chimeric embodiment. Permeable media
also stands in strong contrast with the sandbox model of teaching computer science,
which aims for conceptual learning through decontextualized exercises, such that the
student never has the freedom to use the medium in unprescribed ways and is never
in the position to decide what to do with the medium.

3.	 Context
Before analyzing Banjo (a software package designed as permeable media) we briefly
introduce the course for which it was designed, to show how the design of the soft-
ware functions within the broader learning ecology. Making With Code (Proctor et
al., 2020) is a Constructionist (Papert, 1980) introductory computer science course
for early high school-aged students. The course learning objectives are framed in
terms of Kafai and Proctor’s (2021) computational literacies framework, consider-
ing cognitive, situated, and critical framings of computational thinking (See Figure
1). These framings are distinguished in terms of scale as well as epistemology. The
cognitive framing views learning as primarily a matter of individual skills and knowl-
edge; Making With Code’s cognitive goals are expressed as forming personal rela-
tionships with powerful ideas, in the tradition of Papert. The situated framing recog-
nizes the importance of cognitive processes but views the learner’s identity and the
meaning of her actions to be produced through ongoing participation in a commu-
nity of practice. Making With Code’s situated goals are focused on cultivating “the
computer cultures that may develop everywhere in the next decades” (Papert, 1980,
p. 20). Finally, the critical framing zooms out even further, considering individuals
and communities of practice within the context of broader cultural discourses and
power structures. Making With Code’s critical learning goals are conceptualized as
a computational extension of Freire and Macedo’s “reading the word and reading the
world” (1987), applying their formal computer science learning to better understand
the technological infrastructure which shapes their identities and social interactions.

Figure 1:	 Diagrammatic representation of computational literacies.

242

Permeable media: A design strategy for Constructionist softwar

Figure 1 depicts cognitive, situated, and critical learning as concentric circles with-
in a plane of practice, hovering above a plane of infrastructure. The vertical axis
connecting practices to infrastructure reflects the recognition that many domains of
our lives are now mediated by computational platforms which shape and surveil us
(Zuboff, 2019), as well as the primary pedagogical approach of the course: working
closely with powerful tools. Recognizing that individual cognition, social interaction,
and critical consciousness today involve interaction with computational media, Mak-
ing With Code prioritizes students learning to use tools such as the command line,
a code editor, and software documentation, guided by Papert’s (1980) concept of
objects-to-think-with and diSessa’s (2001) concept of material intelligence. Each unit
in the course consists of a series of labs which introduce new ideas and invite students
to explore them via custom software packages, and then each unit concludes with a
project in which students apply the new ideas in personally-meaningful projects. The
design strategy of permeable media supports the materialization of ideas in media,
thereby playing a central role in the broader pedagogical approach of the course.

4.	 Banjo: A case study in the design of permeable Media
Banjo (Proctor, 2025) is a Python software package which provides an abstraction
layer over Django, a widely-used web application framework. Despite Django’s excel-
lent documentation, it is not suitable for first-year students because there are simply
too many new ideas at play in a web application. Within the Making with Code cur-
riculum, Banjo is introduced at the beginning of a unit focused on networking and
system design, in a lab specifically focused on the design of client/server distributed
systems, and the structure and content of data sent between clients and servers. One
lab considers how a client program makes HTTP requests and works with responses;
the following lab uses Banjo to explore how a server receives HTTP requests and
generates responses using the model/view design pattern. Banjo was designed as
permeable media to explore these ideas: welcoming to beginners, supporting users
in making the medium part of themselves, and allowing users to grow through and
beyond it (in this case, into working with Django).

4.1	 Invite users into the medium
Several features of Banjo’s design help make it appealing to beginner users. First,
Banjo aims to minimize cognitive load by narrowly scoping the problem domain
and exposing a simplified interface to the user. A Banjo server only accepts HTTP
requests at statically declared routes with specified parameters, and only responds
with JSON data. Banjo does not support HTML responses (e.g. web pages), to help
students focus on creating algorithmically-interesting programs rather than getting
lost learning the endless details of HTML and CSS. The labs and projects within
which Banjo is introduced encourage student curiosity and creativity in exploring
what they can do with a tool so simple they can understand it fully.

Web applications typically consist of many files; navigating between them to write
new features or debug errors can be a major source of cognitive load for beginners.
A Banjo app, in contrast, consists of exactly two files: models.py and views.py. (The
code for a small but complete example app, which hosts riddles and allows other
users to guess their answers, is available at https://git.makingwithcode.org/archive/
banjo-demo.) Additionally, configuring and running a web application is often com-
plex; Banjo can be installed from the Python Package Index and then run with the
command  banjo . The simplicity and approachability of Banjo is reinforced with

http://models.py
http://views.py
https://git.makingwithcode.org/archive/banjo-demo
https://git.makingwithcode.org/archive/banjo-demo

243

Chris Proctor, Yeshi Paljor, and Varun Bhatt

beginner-friendly documentation, supporting an important CS reading practice and
making it more likely that beginners will have productive experiences seeking an-
swers to problems.

Banjo makes heavy use of selective disclosure (Hmelo & Guzdial, 1996; Resnick,
Berg, & Eisenberg, 2000), intentionally exposing some aspects of the underlying
complexity and hiding others. For example, users declare a database schema using
Django’s object-relational mapping, but a severely limited subset of model field types
is provided: booleans, strings, integers, floats, and foreign keys. Sensible defaults
are selected for each model field, and most of the options supported by Django are
hidden. The result is a powerful but narrowly-scoped introduction to databases as a
persistent data store behind a web application.

Selective disclosure is also used to present a simplified conceptual model of the re-
quest/response lifecycle. In Banjo, each request/response is modeled as a function
which receives a single dict as input and which also returns a single dict. (Students
will have already been introduced to functional programming as a problem-solving
paradigm, to lists and dicts as data structures, and will have experience navigating
composite data structures as they parsed a server’s JSON response.) Several excep-
tions are provided which model HTTP client errors, such as Forbidden (403), Not
Found (404), and Not Allowed (405). By modeling the complex and unfamiliar be-
havior of a web application as a straightforward function whose job is to transform
a request into a response, Banjo supports learners in applying a simple but powerful
abstraction to web processes which they probably use every day but may not have felt
they could comprehend.

Finally, Banjo invites beginners by making its behavior visible so that users can see
the result of changes and can debug errors. Debugging a client/server application
can be more complex than the simple programs students will have worked with pre-
viously, so it is important that beginners can see the running application from the
perspective of the server (the terminal session logs requests handled, as well as any
messages printed by the user) and from the perspective of the client (the brows-
er uses Django’s debug mode to display details when something goes wrong). The
app’s routes, declared using function decorators in views.py (a strategy borrowed
from Flask), require request parameters to be specified; type-checking is handled au-
tomatically. This allows students to clearly see the input data to their view functions
and avoids subtle errors which can arise with unexpected input. API views, shown
in Figure 2, are automatically generated for each route, allowing beginners to test out
their applications and to show them off to others.

http://views.py

244

Permeable media: A design strategy for Constructionist softwar

Figure 2:	 Screenshots of Banjo’s built-in API views. The left screenshot shows a listing
of all defined routes; the right screenshot shows an automatically generated
form for a route accepting POST requests.

4.2	 Supports users making the medium part of themselves
Banjo was designed with affordances which encourage users to extend their cogni-
tive and social practices into Banjo (incorporating it into their identity), and to sense
and act on the world through the medium (incorporating it into their embodiment).
While the affordances described in this section are part of Banjo, they become more
salient to users within the pedagogical context in which Banjo is used.

Banjo supports learners incorporating it into their cognition through its minimal
interface, foregrounding computational structures which can serve as powerful ob-
jects-to-think-with (Papert, 1980). In the models file, database tables are declared as
classes and table columns are declared as class attributes. This object-relational map-
ping, borrowed from Django, is a very powerful abstraction for modeling domain
problems, presented by Banjo in an approachable way. The views file, meanwhile,
implements server request/response cycles as functions, making it easy for learners to
reason about what kinds of data are being sent in requests, what kind of processing
the server is doing, and what kinds of data are being returned in responses. Dur-
ing runtime, users can interact with the server as clients, making GET and POST
requests and viewing the responses, and can also see the server’s log of handled
requests. Later units in Making With Code take advantage of these affordances,
using Banjo as a cognitive tool. For example, a later lab on public key cryptography
uses Banjo to build a simple encrypted chat app. As students work out how to send
and receive encrypted messages, they rely on their understanding of Banjo to reason
about the security of data in transit and data stored in the app’s database.

In addition to supporting cognition, Banjo supports learners incorporating it into so-
cial practices by making it easy to launch a working server with which others can in-
teract. A single command, banjo, handles all the intermediate steps needed to update
and launch a local server, including generating and applying database migrations.
In Making With Code, the networking unit concludes with a unit project in which
students design, build, and share a server written with Banjo. This makes available
the possibility for a student project to become significant, not just for the teacher or

245

Chris Proctor, Yeshi Paljor, and Varun Bhatt

for a grade, but within the social world of the class or the school. In one school, for
example, student Banjo projects are hosted on a machine accessible from the school’s
internal network, so that they can become part of the school’s computational infra-
structure, for playful purposes or even to solve real issues for the school, especially
when students realize that they can apply the rest of their CS learning within a view
function. Ethical issues regarding privacy, anonymity, and content moderation are
then figured as serious, real-world issues rather than a curricular afterthought.

Imagining, designing, and building servers which might become shared social in-
frastructure encourages students to analyze other infrastructure which they already
use and likely take for granted. For example, Wolf et al. (2023) document how, after
studying how data flows through networks with Banjo, students describe “re-seeing”
the world around them, and “growing as a person” as they become more aware of
how intertwined many aspects of their lives are with computational technologies. De-
veloping critical consciousness of how we are shaped by societal infrastructure is an
explicit goal of Making With Code and is supported by reflection questions which
become the basis of classroom discussion. One lab in which students work with Ban-
jo concludes by asking students to connect their new understanding to their everyday
lives: “Choose a program (Steam), web app (Google Docs), or app (Weather) that you
use frequently. You can’t observe the calls this program is making to its server (un-
less you have fancy tools), but you can infer some of the calls based on the program’s
behavior. Describe a few routes which you think may exist for your chosen program’s
backend server.” Although this question does not specifically elicit reflections about
power, it sets the stage for a classroom discussion which does.

4.3	 Support users growing past the medium
Selective disclosure has sometimes been referred to as “glass-boxing” or “black-box-
ing,” which highlights its binary nature: aspects of the underlying system are either
disclosed or not. Permeable media employs selective disclosure to support beginners
as discussed above, but the goal is to make the abstraction layer soft and permeable
so that students can grow through the abstraction into underlying systems when they
are ready to do so. One example of Banjo’s permeable design is that all the model
classes in Banjo are subclasses of Django classes, as described above. This means that
if students want to work with data types not supported by Banjo, such as dates, they
can import the relevant class from Django, as long as they are ready to engage with
Django’s more complex features and documentation, and to engage with the funda-
mental complexity of representing dates and times. Although many components can
be imported from the underlying framework, Banjo puts some fundamental limits on
what can be built with its toolkit in the interests of the goals above. These constraints
can themselves provide a learning opportunity, as more advanced students start to
become aware of the tradeoffs built into Banjo’s design and consider whether they
are ready to work directly in Django.

Even when learners move on from Banjo, they do not need to leave behind the prac-
tices and mental models they developed, because the practices and models remain
fundamentally the same in Django (and most other web application frameworks)
even as they grow in complexity. The model/view server architecture remains the
same, even though both models and views become much more capable and new lay-
ers of abstraction are introduced (e.g. middleware, more explicit interaction with the
database). Banjo’s file layout, two files within a directory, ends up being the minimal
case for a Django project. The interfaces for running, testing, and debugging the

246

Permeable media: A design strategy for Constructionist softwar

code remain are also largely the same. Banjo’s permeable abstraction layer provides
the simplicity beginners need while building conceptual models and practices which
learners can keep using even as they grow beyond the medium. This is a significant
contrast with beginner-friendly designs such as block-based programming which can
be richly generative contexts for creating projects and exploring ideas, but which
support practices for creating, testing, and debugging code which are quite distinct
from text-based languages students might move on to next.

5.	 Discussion
The design strategy of permeable media emerged from our iterative efforts at build-
ing software to support the goals of Making With Code, theorized in terms of com-
putational literacies. We hoped students would develop relationships with powerful
ideas, participate in computer cultures, and gain critical consciousness of the ways
their existing identities, relationships, and cultures are shaped by computing – and
how they might deploy their formal CS learning to become morefree. These goals are
represented in Figure 1 by the concentric circles of cognitive, situated, and critical
practices. At the same time, we wanted to support students’ learning to think with
powerful tools, their material intelligence to use diSessa’s (2001) term. This goal is
represented by the vertical axis in Figure 1, connecting practices to infrastructure.
After quite a bit of trial and error, we have produced a number of carefully-crafted
software packages which work well in practice supporting the labs and projects in
Making With Code. Permeable media is our theorization of what these designs have
in common and why they work.

The primary mechanism by which permeable media supports these goals is by ma-
terializing students’ practices: their individual cognition, social practices, and criti-
cal consciousness are realized through and with computational media. As we argue
above, permeable media has the potential to be more than just a tool to be used when
needed and then put down; it could become part of its users. This could be concep-
tualized either in terms of embodiment (emphasizing that our corporeal extensions
into media are as concrete as flesh) or in terms of identity authorship (emphasizing
that our identities are as semiotic as media). In either conceptualization, the stakes
are raised as students’ learning about computer science also means learning about
themselves.

Thinking again about Figure 1, this materialization of learning would seem to relate
most directly to the vertical axis, bringing practice closer to infrastructure. However,
if students incorporate classroom learning as part of themselves, the infrastructure
can also serve as a conduit between the scales and epistemologies of the radial axis
traversing cognitive, situated, and critical practices. If students experience permea-
ble media as part of themselves, then classroom learning (e.g. about how data moves
between clients and servers) might also transform students’ understandings of that
same embodiment or identity in other contexts: while playing online games, hav-
ing emotional conversations over text message, arguing with family members about
whether claims from social media are true, or wondering whether democracy can
survive in the digital age. Permeable media, then, may play an important role in com-
puter science education theorized in terms of computational literacies.

247

Chris Proctor, Yeshi Paljor, and Varun Bhatt

6.	 Next Steps
In addition to being a design strategy, permeable media has potential as a concep-
tual framework for research. Working with Sandoval’s (2014) conjecture mapping
framework, we are currently using this paper’s articulation of permeable media as a
high-level conjecture and beginning to formally study its design conjectures (whether
permeable media supports learners into the medium, making it part of themselves,
and growing through it) and its theoretical conjectures (whether the practices sup-
ported by permeable media actually lead to cognitive, situated, and critical computer
science learning).

Acknowledgement
This material is based upon work supported by the National Science Foundation
under Award No. 2219433.

References
Brock Jr., André. 2020. Distributed Blackness. New York University Press.

diSessa, A. A. (2001). Changing minds: Computers, learning, and literacy. MIT Press.

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli
Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. “The Racket Manifesto.” In
1st Summit on Advances in Programming Languages (SNAPL 2015). Schloss-Dagstuhl-
Leibniz Zentrum für Informatik.

Freire, P., & Macedo, D. (1987). Literacy: Reading the word and the world. Routledge.

Hirose, N. (2002). An ecological approach to embodiment and cognition. Cognitive Systems
Research, 3(3), 289–299. https://doi.org/10.1016/S1389-0417(02)00044-X

Hmelo, C. E., & Guzdial, M. (1996). Of black and glass boxes: Scaffolding for doing and
learning. Proceedings of the 1996 International Conference on Learning Sciences, 128–
134.

Hollan, James, Edwin Hutchins, and David Kirsh. 2000. “Distributed Cognition: Toward
a New Foundation for Human-Computer Interaction Research.” ACM Transactions on
Computer-Human Interaction 7 (2): 174–96. https://doi.org/10.1145/353485.353487.

Holland, Dorothy C, William Lachicotte Jr, Debra Skinner, and Carole Cain. 1998. Identity
and Agency in Cultural Worlds. Harvard University Press.

Ivanič, R. (1998). Writing and identity: The discoursal construction of identity in academic
contexts. Amsterdam: John Benjamins Publishing Co.

Kafai, Yasmin B, and Chris Proctor. 2021. “A Revaluation of Computational Thinking in
K-12 Education: Moving Towards Computational Literacies.” Educational Researcher 51
(2): 146–51. https://doi.org/10.3102/0013189X211057904.

Papert, Seymour. 1980. Mindstorms: Children, Computers, and Powerful Ideas. Basic
Books, Inc.

Parsons, Dale, and Patricia Haden. 2007. “Programming Osmosis: Knowledge Transfer
from Imperative to Visual Programming Environments.” In Procedings of the Twentieth
Annual NACCQ Conference, 209–15. Citeseer.

Pea, Roy D. 2004. “The Social and Technological Dimensions of Scaffolding and Rela-
ted Theoretical Concepts for Learning, Education, and Human Activity.” Journal of the
Learning Sciences 13 (3): 423–51.

Proctor, C. (2025). Banjo (Version 0.9.1). [Computer Software]. Retrieved from https://git-
hub.com/cproctor/django-banjo

Proctor, C., Han, J., Wolf, J., Ng, K., & Blikstein, P. (2020). Recovering Constructionism
in computer science: Design of a ninth-grade introductory computer science course. In B.
Tangney, J. Rowan Byrne, & C. Girvan (Eds.) Proceedings of the 2020 Constructionism
Conference. (pp. 473-481). Dublin, Ireland: University of Dublin.

https://doi.org/10.1016/S1389-0417(02)00044-X
https://doi.org/10.1145/353485.353487
https://doi.org/10.3102/0013189X211057904
https://github.com/cproctor/django-banjo
https://github.com/cproctor/django-banjo

248

Permeable media: A design strategy for Constructionist softwar

Resnick, M., Berg, R., & Eisenberg, M. (2000). Beyond Black Boxes: Bringing Transparen-
cy and Aesthetics Back to Scientific Investigation. Journal of the Learning Sciences, 9(1),
7–30. https://doi.org/10.1207/s15327809jls0901_3

Resnick, Mitchel, and Brian Silverman. 2005. “Some Reflections on Designing Construc-
tion Kits for Kids.” In Proceedings of the 2005 Conference on Interaction Design and
Children, 117–22. ACM. https://doi.org/10.1145/1109540.1109556.

Sandoval, W. (2014). Conjecture Mapping: An Approach to Systematic Educational Design
Research. Journal of the Learning Sciences, 23(1), 18–36. https://doi.org/10.1080/10508
406.2013.778204

Weintrop, David, and Uri Wilensky. 2015a. “To Block or Not to Block, That Is the Ques-
tion: Students’ Perceptions of Blocks-Based Programming.” In Proceedings of the 14th
international conference on interaction design and children, 199–208. ACM. https://doi.
org/10.1145/2771839.2771860.

Weintrop, David, and Uri Wilensky. 2015b. “Using Commutative Assessments to Compare
Conceptual Understanding in Blocks-based and Text-based Programs.” In Proceedings
of the Eleventh Annual International Conference on International Computing Education
Research, 101–10. ACM. https://doi.org/10.1145/2787622.2787721.

Wolf, J., Han, J., Proctor, C., Brown, E., Pang, J., & Blikstein, P. (2023). “Growing as a
person”: Developing Identity and Agency Across Formal CS Education and Everyday
Computing Contexts. In Building knowledge and sustaining our community, Procee-
dings of the 16th International Conference on Computer-Supported Collaborative Lear-
ning – CSCL 2023. Montreal, Canada: International Society of the Learning Sciences.

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new
frontier of power. Profile Books.

https://doi.org/10.1207/s15327809jls0901_3
https://doi.org/10.1145/1109540.1109556
https://doi.org/10.1080/10508406.2013.778204
https://doi.org/10.1080/10508406.2013.778204
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2787622.2787721

	_Int_TaIgE0Tk
	sbmn

