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Abstract
Recent developments in Artificial Intelligence (AI) are not only transforming society but are 
also increasingly shaping educational contexts. While AI technologies offer new possibilities 
for rich learning experiences, there is growing consensus that students should not only use 
AI systems but also be able to understand and design them. Constructionist learning envi-
ronments provide a promising foundation for this shift, enabling learners to engage hands-on 
with AI by constructing meaningful artifacts. One particularly suitable domain for this is 
Computational Creativity (CC), which focuses on systems that generate novel outputs using 
AI techniques. In this paper, we introduce the Constructionist Computational Creativity 
(CCC) model, which aims to integrate CC into K–12 education in a way that fosters both 
creative expression and AI competencies. The model was developed through a synthesis 
of CC theory and constructionist pedagogy and was refined through an exploratory study 
with pre-service Computer Science teachers. Findings from this study show that engaging 
learners in the development of creative AI systems supports a deeper understanding of AI 
concepts, enhances computational thinking, and promotes reflection on creativity across 
domains. The CCC model thus offers a structured approach to integrating AI education into 
creative learning processes.

Keywords and Phrases: K-12 education, CS teachers’ education, Computational Creativity, 
Constructionism.

1.	 Introduction
Constructionism, as established by Papert (1980) and further developed by others 
(Kafai, 2017; Kahn, 2021), emphasizes the importance of learning through making 
personally meaningful artifacts. This perspective has long been shown to support the 
development of computational thinking (CT) and creativity, especially in contexts 
where learners use programming environments and digital tools to express ideas and 
solve problems (Kahn, 2021, Przybylla & Romeike 2012). 
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As AI continues to shape society and digital practices across domains, the demand 
for effective educational approaches that foster AI literacy from an early age has 
grown significantly (Touretzky, 2019, Michaeli et al., 2023b). This presents a timely 
need to apply constructionist learning approaches; as they offer learners the opportu-
nity to explore complex ideas through creative, hands-on experiences (Kafai, 2005). 
To date, many AI education initiatives in K–12 settings have focused on the use of AI 
systems or on understanding their societal implications. However, fewer approaches 
enable learners to actively construct AI systems themselves. We argue that engaging 
students in the design and development of AI systems holds considerable potential, 
particularly when grounded in constructionist learning theory (Morales-Navarro & 
Kafai, 2023).

In light of this, we explore how constructionist learning approaches can be extended 
into the domain of Computational Creativity (CC), a subfield of AI concerned with 
the generation of novel and meaningful outputs by machines (Boden, 2004). From 
an educational standpoint, CC presents a unique opportunity: it allows learners to 
engage with foundational AI ideas through the lens of creativity. Designing systems 
that can generate creative artifacts; such as stories, images, music or culinary recipes 
not only cultivates a deeper understanding of AI concepts, but also aligns with stu-
dents’ personal interests and creative expression.

In this paper, we introduce the Constructionist Computational Creativity (CCC) 
model as a framework for integrating AI competencies and creative learning in K–12 
education. Our approach aims to address the current lack of structured pedagogical 
models that support students in building their own creative AI systems. Through 
this process, students gain insight into AI methods such as machine learning and 
generative models, while also developing a deeper understanding of creativity as a 
computational process. We argue that creativity, in this context, is not merely an 
outcome, but a method of engaging with AI in ways that are both educationally rich 
and personally relevant.

2.	 Related Work
Creativity is increasingly recognized as a fundamental educational goal and a cru-
cial 21st-century skill (Pllana, 2019). It involves the ability to generate novel and 
valuable ideas, solutions, or artifacts, whether in the arts, sciences, or technology. In 
educational contexts, creativity is nurtured not only as a cognitive capacity but also 
through hands-on, expressive activities that emphasize design, composition, and re-
flection (Kakarla, 2024). This broad understanding of creativity positions it as both 
a mode of problem-solving and a form of personal expression, highlighting its value 
in various approaches to computing education.

Creativity has long been a core element of constructionist learning environments. 
Based on the ideas of Papert (1980), constructionism emphasizes learning through 
the creation of meaningful artifacts. This pedagogical approach has been widely ap-
plied in computing to support the development of computational thinking (Grover, 
2013), technical skills (Maloney, 2010), and creative exploration through visual pro-
gramming environments such as Scratch, Snap!, and Logo (Maloney, 2012). Activi-
ties, ranging from unplugged tasks to digital creations, have been shown to enhance 
student engagement, especially when they involve open-ended, learner-centered 
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projects (Lindner et al., 2019). Moreover, computational thinking itself is increas-
ingly viewed as a means of creative expression, particularly in areas such as digital 
storytelling, visual art, and music (Wing, 2006; Brennan, 2012).

In parallel, the field of CC has emerged within AI research, focusing on the devel-
opment of systems capable of producing creative artifacts in domains such as music 
(Carnovalini, 2020), art, and language (Colton, 2014; Sadiku, 2019). Foundational 
frameworks by Wiggins (2006), Boden (2009), and Pérez y Pérez (2015) describe CC 
systems in terms of structured search spaces, evaluation mechanisms, and reflective 
processes. While originally situated within theoretical AI research, CC is increas-
ingly seen as a promising instrument for engaging students with AI concepts in an 
intuitive and motivating way (Artut, 2017; Peteranetz, 2019). Educational implemen-
tations of CC allow learners to experiment with creative algorithms, and explore how 
machines generate outputs (Peteranetz, 2019; Zhaochen, 2017). These CC-based ac-
tivities align well with constructionist principles by supporting students as designers 
and experimenters. Rather than merely interacting with AI tools, learners engage in 
building their own creative AI systems; that generate stories, images, or musical com-
positions. This approach fosters deeper conceptual understanding of AI, including 
model design, data representation, and evaluation mechanisms, while simultaneously 
cultivating creative confidence (Peppler, 2005; Kafai, 2012).

Despite the growing interest in constructionist approaches to teaching both compu-
tational thinking and AI, and the promising potential of CC in educational settings, 
there remains a lack of structured pedagogical frameworks to support educators in 
implementing these ideas. Current efforts tend to emphasize co-creation with AI or 
integrate creativity through programming tasks, but few provide guidance on how 
students can become builders of AI-based CC systems. This gap highlights the need 
for a framework that connects core CC system components with constructionist 
learning practices to foster student agency, creativity, and AI literacy. In this paper, 
we address this gap by proposing a Constructionist Computational Creativity (CCC) 
model. The model is designed to guide the integration of creative AI system-building 
into K–12 classrooms, supporting the development of both technical and creative 
competencies. By framing creativity not only as an outcome of learning but also as a 
pathway into deeper engagement with AI, CCC offers a novel direction for construc-
tionist computing education.

3.	 Methodology
This work was motivated by the question of how K–12 students can be enabled not 
only to use but to design AI-driven Computational Creativity (CC) systems within 
constructionist learning environments. We approach this question by developing a 
methodology grounded in both theory and practice. First, foundational theoretical 
frameworks in CC were analyzed, including Boden’s creativity criteria (novelty, fa-
miliarity, and value) (Boden, 2004) and Wiggins’ formal creativity framework (Wig-
gins, 2006), leading us to core components of CC systems, which are the following:

Conceptual Space: The set of ideas, artifacts, rules and constraints, and all the con-
cepts that are the fuel of the creative process to explore, transform, and combine into 
new creative ideas.
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Generation Mechanism (Creative Process): The methods or algorithms used to pro-
duce new ideas/artifacts; e.g., rule-based systems, evolutionary algorithms, neural 
networks.

Evaluation Mechanism: A way to assess the novelty, value, or appropriateness of the 
generated outputs.

Knowledge Representation: The structure and format in which domain knowledge, 
constraints, and goals are represented; such as semantic networks, and ontologies.

Defined Goal: A clear objective the system is working toward, which can guide the 
generation and evaluation processes (Wiggins calls this “R”, or the set of rules and 
goals).

To develop the Constructionist Computational Creativity (CCC) model, we synthe-
sized core components of Computational Creativity (CC) systems with construc-
tionist learning principles, such as learning through artifact creation, iteration, and 
making personally meaningful artifacts. This integration informed the design of our 
four-stage process: Deconstruct, Design, Create, and Evaluate, explained in the fol-
lowing mapping: in the Deconstruct phase, learners explore existing creative arti-
facts and ideas within a specific domain to understand the nature of creativity in 
that context. This exploration helps define the conceptual space by identifying the 
structure, format, and constraints of creative outputs. Learners also analyze what 
makes existing artifacts novel and valuable, leading to the formulation of an evalua-
tion mechanism appropriate for the chosen domain. Additionally, this phase involves 
recognizing the necessary knowledge representations that will later guide the sys-
tem’s generative processes.

The Design phase involves defining a clear creative goal and identifying constraints 
that reflect the chosen domain. Learners select a generative mechanism suited to 
their objective and conceptualize how this technique can simulate creativity within 
the system. This aligns with the generation component of CC systems and prompts 
students to consider how rules, methods, or algorithms can produce novel outputs.

In the Create phase, students implement the generative mechanism using the data 
representations that were already decomposed in the deconstruct phase (either in 
digital or unplugged formats) and apply it toward achieving the previously set goal. 
This phase brings the generative process into action.

Finally, the Evaluate phase focuses on applying the domain-specific evaluation mech-
anism to assess the system’s outputs, based on the defined goal and creativity criteria 
of novelty and value, which are observed when deconstructing existing artifacts. 
Based on this evaluation, learners reflect on their results and refine their systems 
accordingly, embodying the iterative process central to both CC systems and con-
structionist pedagogy. This mapping ensures that the experience of building a CC 
system is not only technically grounded but also aligned with constructionist ideas, 
providing a hands-on, meaningful learning journey that fosters both creative and 
computational competencies.
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To explore the practical feasibility and educational potential of the CCC model, 
an exploratory study was conducted with 15 pre-service Computer Science teach-
ers. Participants engaged in an unplugged learning activity centered on designing 
novel muffin recipes using genetic algorithms. The activity involved identifying the 
creative domain (culinary recipes), selecting relevant AI techniques, and simulating 
generative processes through iterative mutation, crossover, and evaluation, all within 
a set of constraints such as dietary requirements.

The intervention was evaluated through both quantitative and qualitative methods. 
A structured survey assessed participants’ understanding of CC components, clarity 
of technical processes, engagement potential for students, and anticipated classroom 
applicability. Complementary reflective discussions provided pedagogical insights 
into implementation challenges, adaptation needs, and the model’s perceived val-
ue for teacher preparation and student learning. Based on this feedback, the CCC 
model was iteratively refined to better support its integration into K–12 educational 
contexts.

4.	 Outlining a Generalized model for creating a Computational 
Creativity System

We present a four-phase model that guides the construction of creative artifacts 
through the development of Computational Creativity (CC) systems. The model pro-
vides a formalized structure that can be used within constructionist learning envi-
ronments to support learners in exploring both creative domains and fundamental 
AI concepts. The model is shown in figure 1 below.

Figure 1:	 Constructionist Computational Creativity (CCC) model.

Phase 1: Deconstruct: The goal of the first step is to understand creative domains by 
systematically analyzing and deconstructing existing artifacts. This process serves to 
help learners identify key components, structural patterns, and creative techniques 
within a given domain (such as poetry, music, narrative writing, culinary recipes, or 
visual arts) based on representative examples. By observing and reflecting on exist-
ing works, learners begin to recognize the underlying logic and design principles that 
characterize creative artifacts. The goal of this phase is to extract essential building 
blocks of the creative artifacts. These include:
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•	 Data components: identifying data items that form the creative artifacts such as 
musical notes, words of poetry, or ingredients in food recipes, and then represent 
them in digital or unplugged medium.

•	 Patterns and relationships: understanding how elements are repetitively connec-
ted to contribute to the final composition, and then represent this pattern either 
as data structure or rules that controls the creation for a new artifact, either digital 
or unplugged representation.

•	 Novel elements: understanding domain-specific strategies and rules to create 
novel artifacts, novelty could be harmony in music, metaphor in literature, food 
chemical rules in recipes, or word rhyming in poems, achieving this novelty could 
be through defining certain rules that controls the algorithm that forms the new 
artifact, or manipulating the data that the artifact consists of, in this phase, stu-
dents decide or “what” but not “how” which will be defined in the next phase. Of 
course, there could be more than one novel element, but choosing the important 
elements that make the artifacts creative is a part of defining creativity in any 
domain (Jordanous, 2012).

For example, in the context of culinary creativity, learners may begin by identifying 
common ingredients used in specific types of recipes, such as flour and butter in 
baked goods. Through comparison across multiple examples, they observe and ex-
tract typical patterns (e.g., base ingredients, preparation methods) and locate creative 
variance (e.g., the inclusion of unique spices or substitutions). This structured de-
construction enables learners to understand how creativity manifests in the domain 
and prepares them to externalize relevant features as input for AI-based generation 
processes. As such, this phase supports the translation of implicit creative knowledge 
into a format suitable for computational modeling (Brüggen, 2018).

Phase 2: Design: Once students have identified the core elements of creative arti-
facts, the next step is to conceptualize a computational system capable of generating 
similar outputs. This involves making the observed components explicit through rep-
resentation of data and operations that aligns with the domain’s creative principles 
(Boden, 2009), resulting in the following composition:
•	 Setting a goal: deciding on the characteristics or features of the creative artifact to 

be created, such as shape, size, or type.
•	 Defining constraints: creativity often operates within a set of rules (Boden, 2004), 

these rules can be stylistic (e.g., adhering to a particular poetic form) or functional 
(e.g., developing a recipe for a person with a chronic disease), these constraints are 
set according to observed patterns in deconstruct phase.

•	 Identifying the type of creativity: this will play a role in choosing which aspect of 
novelty to be created in this CC system and will participate in choosing a suitable 
AI technique. Creativity techniques as discussed by many researchers (Boden, 
2004; Wiggins, 2006; y Pérez, 2015), are considered as following:
•	 Combinatorial creativity: merging existing ideas in novel ways (e.g., fusing 

different artistic styles to create hybrid visual artworks, or fusing different 
cuisines to create a new dish).

•	 Exploratory creativity: navigating structured possibilities within defined con-
straints (e.g., generating a chess game plan according to known chess game 
moves).

•	 Transformational creativity: redefining creative boundaries to introduce en-
tirely new forms (e.g., developing AI-generated poster design that is inspired 
by a sunset scene).
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•	 Establishing an evaluation mechanism: according to observed patterns in existing 
artifacts which are widely used and accepted by the human taste, students formu-
late criteria to evaluate the quality and effectiveness of generated artifacts based 
on domain-specific metrics, either already existing in defined rules, such as chem-
ical compatibility between food ingredients, or according to subjective evaluation 
such as sound music harmony.

By formalizing these aspects, students lay the format for an AI-based method ca-
pable of producing creative outputs that are meaningful within the chosen domain.

Phase 3: Create: In this phase, students transition from conceptual design to the 
actual creation of the CC system, whether it was digital, using block-based program-
ming, or unplugged activity using school stationary. First, use the input data for 
the CC system that was analyzed in the deconstruct phase, then select and apply a 
generative AI technique that is suitable to the creativity to be represented, using AI 
methodologies such as:
•	 Evolutionary algorithms: simulating iterative refinement by mutating and opti-

mizing creative outputs over multiple generations.
•	 Generative Adversarial Networks (GANs): Training AI models to generate crea-

tive content, by creating a generator and a discriminator that learns to distinguish 
between good and bad generated output.

•	 Markov chains and Recurrent Neural Networks (RNNs): Employing se-
quence-based or stochastic-based learning to generate coherent text, rhyming po-
etry, or speech patterns.

Finally, applying rules and constraints that were defined in previous steps. students 
will end up creating a system that has data representations, algorithmic representa-
tion, and novelty representation through rules and constraints, and these rules and 
constraints could include controlled randomization as randomization was frequently 
observed in creative systems to foster novelty among new artifacts (Rubin, 2012).

Phase 4: Evaluate: Evaluating a creative product is inherently complex due to its 
subjective nature, but its evaluation is fundamental to the process of producing it 
(Candy, 2013). There are a variety of initiatives among researchers to find a more 
formal definition of creativity evaluation, especially with AI producing creativity 
(Jordanous, 2012). Humans’ informed judgment and contextual reflection in evalu-
ating creative products is one way to consider a CC system’s creativity especially for 
creative aspects that are complex to be defined empirically (Jordanous, 2012).

Many aspects of creative artifacts can be evaluated and multiple evaluation tech-
niques can be adopted by students with coordination with their teachers, we suggest 
two examples of evaluation:
•	 Objective evaluation: applying predefined criteria to evaluate certain aspects such 

as grammatical correctness in a created text, or evaluation of chemical compat-
ibility of ingredients in food recipes (Issa, 2019), this depends on which part of 
creativity was demonstrated in the CC system, and whether the creative domain 
has aspects that can go under a systematic evaluation. 

•	 Subjective evaluation: incorporating human assessments and evaluating the out-
put based on audience preferences, for example, assessing a new food recipe, con-
sidering the dietary preference of a group of people in a quantitative evaluation.
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In this phase, students use the system they created to generate a new artifact, then 
they use the evaluation criteria that was already defined in design phase, to evaluate 
the generated artifact, if it achieves the selected goal or not, if it doesn’t, students can 
reflect and modify the system rules, constraints, data representation, or algorithm, to 
get better artifacts generated by the system.

5.	 CC in Practice: An Exploratory Study with Pre-service Teachers
We conducted an experiment with 15 pre-service Computer Science (CS) teachers 
to explore the applicability of the proposed model. To begin, participants were in-
troduced to the concept of CC, including its philosophical foundation as a technical 
representation of creativity using AI (Boden, 2009), and its applications across var-
ious creative fields. This foundational knowledge enabled participants to engage in 
the activity and provide informed reflections that could help assess the practicality 
and educational value of the model. 

The experiment was structured into two phases: hands-on system creation, and 
guided discussions. To evaluate the outcomes of the experiment, we evaluated the 
teacher’s understanding of AI concepts; a part of the technical learning objectives 
in the curriculum presented by Michaeli et al. (2023a), we also ask them to assess 
the applicability of the model in classrooms, which was presented by the authors as 
socio-cultural perspective of AI learning objectives.

The session began with discussions on different creative domains such as music, 
narratives, and culinary arts. Then, teachers explored what types of data are used 
in each domain (e.g., musical notes, story structures, ingredient lists), the building 
blocks of creative artifacts (e.g., harmonies in music, ingredient combinations in 
recipes), the types of creativity that are modeled in each domain (combinational, 
exploratory, and transformational creativity) (Boden, 2004), How rules and con-
straints are derived from the analyzed artifacts (e.g., Dietary restrictions, narrating 
style constraints), which AI techniques are suitable to mimic each type of creativity 
(e.g., Markov chains for text, genetic algorithms for recipes, Generative Adversarial 
Networks (GANs) for image/music generation) (Goodfellow, 2020), and what could 
be a suitable approach to evaluate new artifacts in every field (e.g., subjective pref-
erence, adherence to constraints). Teachers went through the phases of the CCC 
model through an activity that includes creating an unplugged CC system that gen-
erates a new muffin recipe. Teachers used 12 muffin recipes from AllRecipes.com 
and analyzed them into building blocks such as flour type, sweeteners, and fruit or 
vegetables to understand how muffin recipes are created (Deconstruct). Then they 
selected an AI technique which is genetic algorithms, an evolutionary AI algorithm 
in which the outcome evolves through multiple iterations of crossover, mutation, and 
selection, mimicking human biological evolution (Holland, 1992). Genetic algorithms 
were previously used to recommend new food recipes (Jia, 2024) and they were wide-
ly tested on multiple creative domains, in plugged and unplugged forms (Fernández 
de Vega, 2014). Teachers were divided into two teams, each team set a different goal, 
team A chose to create a fully vegan muffin recipe, team B chose to create a muffin 
recipe based on their personal taste preferences. Each team established a subjective 
evaluation criterion and decided on evaluating evolving recipes by voting (Design). 
Teachers implemented an unplugged strategy to simulate the mutation, crossover, 
and selection processes in genetic algorithms (Create). In selection, they chose par-
ent recipes based on their defined end goals and voting. For crossover, each team 
developed a customized strategy to combine recipe components, they decided where 

http://AllRecipes.com
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to split parent recipes to create offspring. For mutation, they used randomization to 
change two ingredients in the generated recipe. Figure 2 shows photos of teachers 
engaging with these AI concepts in the activity. Afterwards, participants chose to 
engage in a subjective evaluation of the recipe, using their own criteria that they 
previously defined from their understanding of the domain and the goals they had 
set. As discussed in the previous section, human evaluation can be considered for 
creative artifacts to evaluate many aspects of creativity, one of them is usefulness of 
the produced artifacts; a criterion that is commonly referenced in creativity research 
(Kaufman, 2012). Each team performed heuristic evaluations after three evolution-
ary iterations, where team A encountered difficulties in their crossover strategy, lead-
ing to a final recipe that was new but not appealing. They reflected that more iter-
ations and refined mutations could improve results. Team B created a novel recipe 
that required minor modifications (Evaluate). After completing the exercise, teachers 
discussed how the same activity could be redesigned with a different underlying AI 
technique, such as GANs , where students could play roles to simulate the process 
of training GANs, simulating the behavior of generators and discriminators. Finally, 
teachers concluded by discussing how this model can be integrated in k-12 education, 
with flexibility of applying unplugged, semi-plugged, or plugged activities, allowing 
for greater learnings about creative domains and AI systems.

Figure 2:	 Pre-service teachers designing and experimenting with a constructionist CC-
based approach.

6.	 Results and Discussion

6.1	 Teachers’ reflections
Ten pre-service teachers participated in a post-experiment evaluation survey aimed at 
assessing the perceived effectiveness and applicability of the CCC model. The survey 
included both quantitative questions covering: (1) understanding of computational 
creativity system components, (2) perceived student engagement, (3) clarity of the 
technical process, (4) understanding of AI principles, and (5) likelihood of classroom 
adoption. All ten teachers found the activity to be interactive and engaging. All 
participants also demonstrated an understanding of the core components of CC sys-
tems. Eight teachers expressed confidence in their grasp of the step-by-step process 
required to build a CC system. Six reported gaining a clearer understanding of how 
AI-based systems are constructed to generate creative outputs. Seven participants 
noted that the activity strongly fostered creative thinking, and nine teachers said 
they would consider incorporating the activity into their computing or extracurricu-
lar classes.
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This activity gave teachers an interesting experience to present AI concepts in 
schools. Through designing and testing their own unplugged creative systems, teach-
ers engaged in reflective practice that not only enhanced their pedagogical content 
knowledge but also modeled the kind of constructionist learning students would 
undergo.

6.2	 Refinement of the CCC Model Based on Experimental Findings
The experiment and discussion with pre-service teachers revealed several important 
supporting design considerations that can enhance the model’s practical implemen-
tation in K–12 classrooms. These considerations do not alter the model’s phases, but 
instead serve as additional practices that support successful adoption:

Student readiness: Participants discussed that students need a foundational under-
standing of AI (e.g., what AI is, what it can/cannot do). They suggested incorporat-
ing a preparatory phase focused on basic AI literacy before starting the CCC activity.

Teacher preparedness: Participants discussed that they could actively shape learn-
ing by guiding students’ reflections and helping them connect AI techniques to cre-
ative outputs. Also, they need to guarantee the technical correctness of choosing 
AI methods in the CC systems created by students. This could be Emphasized in 
teacher training in AI and CC facilitation; teachers need scaffolding materials and 
clear guidance.

Flexibility of activity formats: Teachers discussed plugged, semi-plugged, and un-
plugged formats depending on classroom needs. They suggested having multiple for-
mat options can help them adapt corresponding tools/resources in classroom setups 
and technical capabilities.

Measuring activity outcomes: Teachers discussed that evaluating students’ creativi-
ty, and AI understanding will help in measuring the success of the model outcomes. 
Therefore, teacher training should not only focus on designing and implementing the 
activity but ways to evaluate the outcomes of the activity, by creating a better under-
standing of measuring students’ AI competencies and creativity.

Using this model, educators can tailor the activities to their technological resources 
and student needs, while still maintaining the core learning outcomes. Ultimately, 
the role of the teacher remains central throughout the process, not only in facilitating 
the activity, but in framing it pedagogically to ensure that students derive AI compe-
tencies from their creative work.

7.	 Conclusion
This study presents a structured model for teaching and learning about AI and crea-
tive domains through constructing CC systems. By following the four-phase process 
(Deconstruct, Design, Create, and Evaluate) students gain both theoretical and prac-
tical insights into creative domains while actively engaging with AI concepts. This 
methodology not only enables learners to analyze and create novel and creative arti-
facts but also fosters deeper understanding through hands-on experimentation and 
aligns perfectly with the idea behind constructionism which is learning by making. 
Moreover, this methodology reinforces the connection between technology and crea-
tive expression, demonstrating how AI can enhance and support creative fields. The 
proposed model serves as a valuable reference for designing educational experiences 
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that integrate CC, encouraging students to explore AI’s role in creative fields such 
as literature, music, and culinary arts. Future research could explore how this meth-
odology impacts students’ learning outcomes over time and how different creative 
domains influence engagement and understanding. Ultimately, by embedding CC 
in education, students are provided with tools to become both creators and critical 
thinkers of AI-based creativity.
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