Spatial Reasoning Experiences in a STEM Context
8 Year-Old Disadvantaged Children Exploring Earthquakes and Related Phenomena
DOI:
https://doi.org/10.21240/constr/2025/92.XKeywords:
Spatial reasoning, Space sizes, Reference frames, Primary school, Earthquake risk, Escape routes, Concrete materials, Google Maps, Google Earth, LightBot.Abstract
We present parts of a study that focused on the design and implementation of a learning trajectory in a STEM context for promoting spatial reasoning in 8 year-old disadvantaged children. The larger context of the learning trajectory was the earthquake phenomenon. It included tasks in which students built some concrete instruments (e.g., a seismograph) and structures, as well as used some digital tools (e.g., Google Maps, LightBot), in order to explore aspects related to the phenomenon (such as designing escape routes). By having authentic experiences and engaging in hands-on constructions, students were able to perceive or imagine and articulate different spatial sizes, experiment with different measurement strategies and use adequate measuring instruments for each spatial size.References
Battista, M.T., & Clements, D.H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27 (3), 258-292. https://doi.org/10.2307/749365
Blikstein, P. (2008). Travels in Troy with Freire: technology as an agent for emancipation. In P. Noguera & C. A. Torres (Eds.), Social Justice Education for Teachers: Paulo Freire and the possible dream (pp. 205-244). Sense publishers.
Bruce, C. D. & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331-343. https://doi.org/10.1007/s11858-014-0637-4
Clements, D. H. & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133-148. https://doi.org/10.1007/s10857-011-9173-0
Cobb, P. & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. In A. E. Kelly, R. A. Lesh & J. Y. Baek (Eds.), Handbook of design research methods in education (pp. 68-95). Routledge. https://doi.org/10.4324/9781315759593.ch4
Davis, B. & Spatial Reasoning Study Group (Eds.) (2015), Spatial reasoning in the early years: Principles, assertions, and speculations. Taylor & Francis.
Esparza C., E. (2005). Estimulación de las relaciones euclidianas a través de actividades de programación Logo. [Unpublished master’s thesis]. Cinvestav.
Francis, K., Khan, S. & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 2, 1-20. https://doi.org/10.1007/s40751-015-0010-4
Freudenthal, H. (2002). Revisiting mathematics education: China lectures. Kluwer.
Gálvez P., G. M. (1985). El aprendizaje de la orientación en el espacio urbano: Una proposición para la enseñanza de la geometría en la escuela primaria [Doctoral dissertation]. Cinvestav. https://repositorio.cinvestav.mx/handle/cinvestav/4422
Harris D (2023) Spatial reasoning in context: bridging cognitive and educational perspectives of spatial-mathematics relations. Frontiers in Education 8:1302099. https://doi.org/10.3389/feduc.2023.1302099
Hoyles, C. & Noss, R. (2015). A computational lens on design research. ZDM, 47, 1039-1045. https://doi.org/10.1007/s11858-015-0731-2
Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. Special Papers-Geological Society of America, 413, 53. https://doi.org/10.1130/2006.2413(05)
Levinson, S. C. (1996). Frames of reference and Molyneux's question: Cross-linguistic evidence. In P. Bloom, M. Peterson, L. Nadel, & M. Garrett (Eds.), Language and space (pp. 109-169). MIT press.
Ortiz-Rocha, Y.A., Sacristán, A. I. & Sandoval, I. (2024). Developing spatial reasoning skills at early ages: the construction of reference frames using LightBot. In E. Faggiano, A. Clark-Wilson, M. Tabach, H. Weigand (Eds.), Proceedings of the 17th ERME Topic Conference MEDA 4 (pp. 311-318). University of Bari Aldo Moro. https://community.ict.uniba.it/comunicazionedigitale/it/fuori-collana/meda4-proceedings-30.pdf
Ortiz-Rocha, Y.A., Sandoval, I. & Sacristán, A. I. (2022). Constructing spatial frames of reference in early ages: recognizing macrospaces. In T. F. Blanco, C. Núñez-García, et al. (Eds.), Investigación en Educación Matemática XXV (pp. 441-449). SEIEM. https://www.seiem.es/docs/actas/25/Comunicaciones/441.pdf
Ortiz-Rocha, Y.A., Sandoval, I. & Sacristán, A.I. (2024). Connections between measurement, dimension shifting, and perspective-taking: a study of spatial reasoning in micro-, meso-, and macroespaces. In N. Adamuz-Povedano, E. Fernández- Ahumada, N. Climent y C. Jiménez-Gestal (Eds.), Investigación en Educación Matemática XXVII (pp. 377- 384). SEIEM. https://www.seiem.es/docs/actas/27/ActasXXVIISEIEM.pdf
Papert, S. (1980). Mindstorms : children, computers, and powerful ideas. New York: Basic Books.
Papert, S. (1991). Situating Constructionism. In S. Papert & I. Harel (Eds.), Constructionism. Cambridge, MA: MIT Press.
Tversky, B., & Hard, B. M. (2009). Embodied and disembodied cognition: Spatial perspective-taking. Cognition, 110(1), 124-129. https://doi.org/10.1016/j.cognition.2008.10.008
Downloads
Published
Conference Proceedings Volume
Section
License
Copyright (c) 2025 Yudi Andrea Ortiz Rocha, Ana Isabel Sacristán, Ivonne Sandoval

This work is licensed under a Creative Commons Attribution 4.0 International License.