Spatial Reasoning Experiences in a STEM Context

8 Year-Old Disadvantaged Children Exploring Earthquakes and Related Phenomena

Authors

  • Yudi Andrea Ortiz Rocha Universidad La Gran Colombia https://orcid.org/0000-0003-1831-1037
  • Ana Isabel Sacristán Cinvestav
  • Ivonne Sandoval Cinvestav & Universidad Pedagógica Nacional, Unidad Ajusco, CDMX

DOI:

https://doi.org/10.21240/constr/2025/92.X

Keywords:

Spatial reasoning, Space sizes, Reference frames, Primary school, Earthquake risk, Escape routes, Concrete materials, Google Maps, Google Earth, LightBot.

Abstract

We present parts of a study that focused on the design and implementation of a learning trajectory in a STEM context for promoting spatial reasoning in 8 year-old disadvantaged children. The larger context of the learning trajectory was the earthquake phenomenon. It included tasks in which students built some concrete instruments (e.g., a seismograph) and structures, as well as used some digital tools (e.g., Google Maps, LightBot), in order to explore aspects related to the phenomenon (such as designing escape routes). By having authentic experiences and engaging in hands-on constructions, students were able to perceive or imagine and articulate different spatial sizes, experiment with different measurement strategies and use adequate measuring instruments for each spatial size.

References

Battista, M.T., & Clements, D.H. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27 (3), 258-292. https://doi.org/10.2307/749365

Blikstein, P. (2008). Travels in Troy with Freire: technology as an agent for emancipation. In P. Noguera & C. A. Torres (Eds.), Social Justice Education for Teachers: Paulo Freire and the possible dream (pp. 205-244). Sense publishers.

Bruce, C. D. & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for young children: what is it? Why does it matter? And what can we do about it? ZDM, 47(3), 331-343. https://doi.org/10.1007/s11858-014-0637-4

Clements, D. H. & Sarama, J. (2011). Early childhood teacher education: The case of geometry. Journal of Mathematics Teacher Education, 14(2), 133-148. https://doi.org/10.1007/s10857-011-9173-0

Cobb, P. & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. In A. E. Kelly, R. A. Lesh & J. Y. Baek (Eds.), Handbook of design research methods in education (pp. 68-95). Routledge. https://doi.org/10.4324/9781315759593.ch4

Davis, B. & Spatial Reasoning Study Group (Eds.) (2015), Spatial reasoning in the early years: Principles, assertions, and speculations. Taylor & Francis.

Esparza C., E. (2005). Estimulación de las relaciones euclidianas a través de actividades de programación Logo. [Unpublished master’s thesis]. Cinvestav.

Francis, K., Khan, S. & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 2, 1-20. https://doi.org/10.1007/s40751-015-0010-4

Freudenthal, H. (2002). Revisiting mathematics education: China lectures. Kluwer.

Gálvez P., G. M. (1985). El aprendizaje de la orientación en el espacio urbano: Una proposición para la enseñanza de la geometría en la escuela primaria [Doctoral dissertation]. Cinvestav. https://repositorio.cinvestav.mx/handle/cinvestav/4422

Harris D (2023) Spatial reasoning in context: bridging cognitive and educational perspectives of spatial-mathematics relations. Frontiers in Education 8:1302099. https://doi.org/10.3389/feduc.2023.1302099

Hoyles, C. & Noss, R. (2015). A computational lens on design research. ZDM, 47, 1039-1045. https://doi.org/10.1007/s11858-015-0731-2

Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. Special Papers-Geological Society of America, 413, 53. https://doi.org/10.1130/2006.2413(05)

Levinson, S. C. (1996). Frames of reference and Molyneux's question: Cross-linguistic evidence. In P. Bloom, M. Peterson, L. Nadel, & M. Garrett (Eds.), Language and space (pp. 109-169). MIT press.

Ortiz-Rocha, Y.A., Sacristán, A. I. & Sandoval, I. (2024). Developing spatial reasoning skills at early ages: the construction of reference frames using LightBot. In E. Faggiano, A. Clark-Wilson, M. Tabach, H. Weigand (Eds.), Proceedings of the 17th ERME Topic Conference MEDA 4 (pp. 311-318). University of Bari Aldo Moro. https://community.ict.uniba.it/comunicazionedigitale/it/fuori-collana/meda4-proceedings-30.pdf

Ortiz-Rocha, Y.A., Sandoval, I. & Sacristán, A. I. (2022). Constructing spatial frames of reference in early ages: recognizing macrospaces. In T. F. Blanco, C. Núñez-García, et al. (Eds.), Investigación en Educación Matemática XXV (pp. 441-449). SEIEM. https://www.seiem.es/docs/actas/25/Comunicaciones/441.pdf

Ortiz-Rocha, Y.A., Sandoval, I. & Sacristán, A.I. (2024). Connections between measurement, dimension shifting, and perspective-taking: a study of spatial reasoning in micro-, meso-, and macroespaces. In N. Adamuz-Povedano, E. Fernández- Ahumada, N. Climent y C. Jiménez-Gestal (Eds.), Investigación en Educación Matemática XXVII (pp. 377- 384). SEIEM. https://www.seiem.es/docs/actas/27/ActasXXVIISEIEM.pdf

Papert, S. (1980). Mindstorms : children, computers, and powerful ideas. New York: Basic Books.

Papert, S. (1991). Situating Constructionism. In S. Papert & I. Harel (Eds.), Constructionism. Cambridge, MA: MIT Press.

Tversky, B., & Hard, B. M. (2009). Embodied and disembodied cognition: Spatial perspective-taking. Cognition, 110(1), 124-129. https://doi.org/10.1016/j.cognition.2008.10.008

Downloads

Published

24-06-2025

Conference Proceedings Volume

Section

Full Paper

How to Cite

Spatial Reasoning Experiences in a STEM Context: 8 Year-Old Disadvantaged Children Exploring Earthquakes and Related Phenomena. (2025). Constructionism Conference Proceedings, 8, 313-324. https://doi.org/10.21240/constr/2025/92.X